Identifying Efficient Kernel Function in Multiclass Support Vector Machines

نویسنده

  • R. Sangeetha
چکیده

Support vector machine (SVM) is a kernel based novel pattern classification method that is significant in many areas like data mining and machine learning. A unique strength is the use of kernel function to map the data into a higher dimensional feature space. In training SVM, kernels and its parameters have very vital role for classification accuracy. Therefore, a suitable kernel design and its parameters should be used for SVM training. In this paper, we present certain kernel functions for multiclass support vector machines and propose the appropriate and optimal kernel for one-versus-one (OAO) and one-versus-all (OAA) multiclass support vector machines. The performance of the one-versus-one and one-versus-all multiclass SVM are illustrated by empirical results and it is evaluated by the parameters like support vectors, support vector percentage, classification error, training error and CPU time. The experimental results demonstrate the ability to use more generalized kernel function and it goes to prove that the polynomial kernel’s efficiency in terms of high classification accuracy for several datasets. General Terms Pattern Classification, Data Mining, Machine Learning

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identifying Efficient Kernel Function in Multiclass Support Vector Machines

Support vector machine (SVM) is a kernel based novel pattern classification method that is significant in many areas like data mining and machine learning. A unique strength is the use of kernel function to map the data into a higher dimensional feature space. In training SVM, kernels and its parameters have very vital role for classification accuracy. Therefore, a suitable

متن کامل

Remote Sensing and Land Use Extraction for Kernel Functions Analysis by Support Vector Machines with ASTER Multispectral Imagery

Land use is being considered as an element in determining land change studies, environmental planning and natural resource applications. The Earth’s surface Study by remote sensing has many benefits such as, continuous acquisition of data, broad regional coverage, cost effective data, map accurate data, and large archives of historical data. To study land use / cover, remote sensing as an effic...

متن کامل

Separating Well Log Data to Train Support Vector Machines for Lithology Prediction in a Heterogeneous Carbonate Reservoir

The prediction of lithology is necessary in all areas of petroleum engineering. This means that to design a project in any branch of petroleum engineering, the lithology must be well known. Support vector machines (SVM’s) use an analytical approach to classification based on statistical learning theory, the principles of structural risk minimization, and empirical risk minimization. In this res...

متن کامل

Face Recognition using Eigenfaces , PCA and Supprot Vector Machines

This paper is based on a combination of the principal component analysis (PCA), eigenface and support vector machines. Using N-fold method and with respect to the value of N, any person’s face images are divided into two sections. As a result, vectors of training features and test features are obtain ed. Classification precision and accuracy was examined with three different types of kernel and...

متن کامل

A Multiclass Classification of Cancer Data: Using a Kernel Based Clustering k-NN Support Vector Machine

Support vector machines (SVM) have been promising methods for classification because of their solid mathematical foundations which convey several salient properties that other methods hardly provide. However, despite of the prominent properties of SVM, they are not as favored for large-scale data as complexity of SVM is highly dependent on the size of a data set. Microarray gene expression data...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011